Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241386

RESUMO

A new benzotrithiophene-based small molecule, namely 2,5,8-Tris[5-(2,2-dicyanovinyl)-2-thienyl]-benzo[1,2-b:3,4-b':6,5-b″]-trithiophene (DCVT-BTT), was successfully synthesized and subsequently characterized. This compound was found to present an intense absorption band at a wavelength position of ∼544 nm and displayed potentially relevant optoelectronic properties for photovoltaic devices. Theoretical studies demonstrated an interesting behavior of charge transport as electron donor (hole-transporting) active material for heterojunction cells. A preliminary study of small-molecule organic solar cells based on DCVT-BTT (as the P-type organic semiconductor) and phenyl-C61-butyric acid methyl ester (as the N-type organic semiconductor) exhibited a power conversion efficiency of 2.04% at a donor: acceptor weight ratio of 1:1.

2.
Energy Environ Sci ; 15(9): 3923-3932, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36275406

RESUMO

Coordination polymers (CPs) made of redox-active organic moieties and metal ions emerge as an important class of electroactive materials for battery applications. However, the design and synthesis of high voltage alkali-cation reservoir anionic CPs remains challenging, hindering their practical applications. Herein, we report a family of electrically conducting alkali-cation reservoir CPs with the general formula of A2-TM-PTtSA (wherein A = Li+, Na+, or K+; TM = Fe2+, Co2+, or Mn2+; and PTtSA = benzene-1,2,4,5-tetra-methylsulfonamide). The incorporation of transition metal centers not only enables intrinsic high electrical conductivity, but also shows an impressive redox potential increase of as high as 1 V as compared to A4-PTtSA analogues, resulting in a class of organometallic cathode materials with a high average redox potential of 2.95-3.25 V for Li-, Na- and K-ion batteries. A detailed structure - composition - physicochemical properties - performance correlation study is provided relying on experimental and computational analysis. The best performing candidate shows excellent rate capability (86% of the nominal capacity retained at 10C rate), remarkable cycling stability (96.5% after 1000 cycles), outstanding tolerance to low carbon content (5 wt%), high mass loading (50 mg cm-2), and extreme utilisation conditions of low earth orbit space environment tests. The significance of the disclosed alkali-ion reservoir cathodes is further emphasized by utilizing conventional Li-host graphite anode for full cell assembly, attaining a record voltage of 3 V in an organic cathode Li-ion proof-of-concept cell.

3.
Opt Express ; 29(4): 5166-5178, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726057

RESUMO

We describe a non-interferometric ultrashort-pulse measurement technique based on frequency-resolved optical gating (FROG) with which pulses can be reconstructed directly, i.e. non-iteratively. Two different FROG spectrograms are measured, which represent the only information required to reconstruct the amplitudes and phases of two independent input pulses. The direct reconstruction method is demonstrated with a single-shot FROG setup used to obtain the spectrograms generated from two synchronized input pulses. To demonstrate and determine the reconstruction quality for complex pulses, a programmable pulse shaper is used to modify the pulses sourced from a Kerr-lens mode-locked Ti:sapphire oscillator.

4.
ACS Appl Mater Interfaces ; 12(11): 13275-13286, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32067453

RESUMO

Conductive and flexible bio-based materials consisting of chitosan films coated with conductive poly(3-hexylthiophene) (P3HT) were prepared. Thermal, optical, mechanical, morphological, wettability, and conductive properties were analyzed. In a very simple and effective method of chitosan film modification, a controlled volume of a P3HT solution was deposited onto a previously formed chitosan film, assisted by the spin coating method. Later, P3HT-coated chitosan films were doped by simple contact with an aqueous solution of HAuCl4. The use of HAuCl4 becomes attractive because the reports on the doping process in this type of material using this reagent are still scarce and recent to date. In addition, since this acid is a well-known metal nanoparticle precursor, its use opens new future perspectives for these materials into new applications. The effect of P3HT concentration and doping times on film properties was studied. Attenuated total reflectance spectroscopy and UV-Vis spectroscopy allowed us to demonstrate that the presence of the P3HT coating and its doping induce significant changes in the vibrational modes and optoelectronic properties of samples. Additionally, the images obtained by scanning electron microscopy showed a well-distributed and homogeneous coating on the surface of chitosan films. Measured conductivity values of doped film samples fall in the range from 821.3 to 2017.4 S/m, representing, to the best of our knowledge, the highest values reported in the literature for chitosan/chitin-based materials. Indeed, these values are around or even higher than those obtained for some materials purely consisting of conductive polymers.


Assuntos
Quitosana/química , Materiais Revestidos Biocompatíveis/química , Eletrônica/instrumentação , Tiofenos/química , Cloretos/química , Módulo de Elasticidade , Condutividade Elétrica , Compostos de Ouro/química , Teste de Materiais , Maleabilidade , Molhabilidade
5.
Nanotechnology ; 23(25): 255602, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22653118

RESUMO

We report an easy one-step template-free electrodeposition method for preparing large arrays of ZnO hexagonal nanocolumns, vertically oriented on a Au-coated Si substrate. Systematic scanning electron microscopy investigations revealed the potential of this method for obtaining a high degree of verticality and orientation of the nanostructures and for controlling their aspect-ratio in an easy manner. Further structural studies demonstrated that the as-obtained ZnO nanocolumns present a well defined hexagonal symmetry exhibiting an excellent crystallinity.

7.
Nano Lett ; 7(12): 3639-44, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17997585

RESUMO

We demonstrate that arrays of nanowires of conjugated polymers can be easily produced by a simple embossing protocol, compatible with very large scale integration technology. The embossing process is shown to have the supplementary virtue to increase the internal degree of order of the nanowires, significantly enhancing their performance. This is applied to the fabrication of nanowire-based devices consisting of a liquid crystalline light-emitting polymer, of a liquid crystalline semiconducting polymer, and of an amorphous conducting polymer, illustrating the versatility and wide applicability of the method.


Assuntos
Análise em Microsséries , Nanofios/química , Microscopia de Força Atômica , Microscopia Eletrônica , Compostos Orgânicos/química , Pirróis , Tiofenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...